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ABSTRACT 

We construct a realistic supersymmetric SU(6) grand 

unified theory with a natural solution of the fine tuning 

and the strong CP probleme. The prediction for sin2ew in 

one loop order is in good agreement with experiment. 
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I. INTRODUCTION 

Supersymmetric grand unified theories are of interest 

at present, since they can provide a partial solution to the 

gauge hierarchy problem[l]. If we fine tune the parameters 

0 f the Lagrangian at the tree level, it is not destroyed by 

radiative corrections. Hence, once a large mass hierarchy 

is established at the tree level, it is stable under 

radiative corrections[21. Supersymmetry, by itself, 

however, does not tell us why such a mass hierarchy sho111d 

be there at the tree level. In particular, we still need 

fine tuning of parameters to one part in 1016 at the tree 

level, to keep the mass of the weak doublet higgs small 

compared to its color triplet partner. One solution to this 

problem is offered by the missing partner mechanismI31, in 

which the mass term for the doublet higgs is absent because 

of group theoretic reason. In a previous paperr we 

proposed another natural solution of this fine tuning 

problem in the context of locally supersymmetric grand 

unified theor i.es. We also showed how to introduce a 

Peccei-Quinn symmetry in this type Of mode 1s , which is 

spontaneously broken at 10l'GeV. In this paper we propose a 

simple realistic locally supersymmetric SU(6) grand unified 

theory based on the ideas developed in ref.4. One loop 

contribution to sin20w in this model is in very good 

agreement with experiment. Also the constraint I, f 

perturbative unification (i.e. that the gauge coupling 
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constant at the ~.rma unitization scale is smaller than 

unity) almost uniquely forces us to ti1 e loinimal model of 

this kind. 

In Sec.11 of this paper we shall describe the model. 

In Sec. III we shall study the effect of one lo:>p cadiative 

corrections and show how this model provides a natural 

solution to the fine tufiing and the strong CP problems. 
The W(6) symmetry is spontaneously broken down to su(3)xsU(3) 

XU(1) at a scale of order 10 17 GeV by the vev of an adjoint 

higgs. The SU(3)XSU(3)XU(l) symmetry, as well as the Peccei- 
. 

Quinn symmetry is broken at a scale of order 10 10 GeV by the 

vev of the fundamental higgs,. the,unbroken gauge group below 

lO"GeV being SU(3)XSIJ(Z)XU(l). This symmetry is broken to 

SU(3)XU(1) at a scale of order 103GeV by the vev of fundamental 

higgs due to radiative corrections. In Gec.IV we shall study 
'the renormalization group equations for various gauge 

coupling constants and compute the value of sin2ew, grand 
unification scale, and the value of the gauge coupling 

constant at the grand unification scale. In Sec. V we 

summarize our results, and suggest possible alterations of 

this model. 
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II. 'THE MODEL 

n 
The model constists of a superEield 0 belonging to the 

adjoint(35) representation of SU(6), n+l pairs of . n 
superfields R, ;i, h(i), i(i), (i=l ,...n) belonging to the 6 

and g representations respectively, and several singlet 
,. ,. 

superfields Qo, u, Gci) (i=l,...n). Besides these, there 

are three generations of quark lepton fields, each 

generation containing a zJ6,1S and 20 representations which 

we denote bY $tkr $6, ;)l~,~ and 620,~ (s=1,..3) 

respectively. The superpotential is, 

+Ag (cy.,ti) -$ G CiJ kc*, + o(ii) go fiCiJ 2 Cil + n;‘d zc<J $cij S&I) 

+ xi’:., c; & &+ G’% q1: c$ ,5;,5 &+ 2 %h &t&. i?- ff&,‘ ~ cJ,,t , 1 
0) 

where the mass parameters Xi are of order 10 16-1017GeV. For 

convenience of notation, we have droppe-l all the W(6) 

indices in the above expression. In the absence of any 

supersymmetry breaking terms, the potential V, corresponding 

to the above superpotential, is given by, 

v~c?fl=~if + z” ~&‘;TaYif 
c 

Fy; = awjay, 
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where the sum over i runs over the scalar components v. of 1 
all the superfields appearing in Cl), and the sum over (t 

runs over all the generators of the gauge group. V has a 

supersymmetric minimum (V=O) at, 

< ALL OTHER FIELDS> =o 

except the vev of S(i), which is undetermined at this stage. 

Rere M is a mass parameter of the order of Ml, &f2 and J+~, 

and al and a2 are constants of order unity. This breaks the 

STJ(6) gauge group to SU(3)xSU(3)xU(lJ at a scale of order 

1016-1017GeV. The fields R, 6, H(i), G(i), in general, 

acquire masses of order M, unless cS(~)> takes special. value 

which exactly cancels the mass terms of either the upper 

three or the lower three components of Jr('), ici). The 

fields ur s(i) and Qif?, QL~,~ and Q20,s remain massless at 

this stage. 

Let us now consider the effect of supersymmetry 

breaking. Supersymmetry is assumed to be spontaneously 

broken by the superhiggs mechanism!51 at a scale of order 

1O'lGeV , giving the gravitino a mass YmB N 1n2-1g3GeV. 

But the supersymmetry breaking takes place entirely in the 

'hidden sector', which couples to the observable sector 
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(containing all the .fi.elds that appear in Eq.(l)) only 

through the effect of gravityt61. The net effect 0 f 

supersymmetry breaking on the observable sector is to 

introduce explicit soft supersymmetry breaking in the 

Lagrangian of the form[Gl, 

f3(A-3) w (-3) + F “^J- zi d++,+h.cj-n--$z I y,f (s) 
iL 

where yi denote the scalar components of all the superfields 

which appear in (l), and A is a constant of order unity, 

whose precise value depends on the underlying supergravity 

theory. These terms may be expressed in terms of the 

superfields as follows: 

p2tq '2 (~4 wiy"j +'If$i a&l 4h.c-j 
K 

-J dZ19 dcz8 3 '2 z ij-- y; i 
where, 

is a spurion superfield. 

Let us now try to m.inirnize the potential including 

these new terms. For simplicity of discussion we shall drop 

the u, Q, R and g fields from our discussion, since the 

inclusion of these fields do not change any of the results 

that will be discussed below. The new potential, which is 

obtained by subtracting (5) from the potential given in (2), 
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may be written as, 

The minimum of the potential satisfies the condition, 

BW 

“y; 
- m;, ;f, ,< m,Z 

if yi is either of the heavy fields 0 or oo. This may be 

illustrated by considering a simple model containing only 

one field y with mass and ve'v o.f order '4. The minimization 

of the potential then requires that, 

c a2\/\/ g- ~IJ) (g - m&f) = (A-3) “(s $5; $0) 

where we have assumed <y> to be real for simplicity, and 

ignored the contribution from the 0 term, since in the 

present case it vanishes automatically if, for e%=Xmple <a> 

is real, and <HCi)> and <l?(i), are equal. We may solve 

equation (10) iteratively, keeping in mind that aw/ay 

vanishes in the supersymmetric limit. If we start at the 

point where aW/ay vanishes, then after the first iteration 
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we 9et aW/3y=mqy. We may substitute this value of aW,/ay on 

the right hand side of Eq.(ro), to get, 

( JW ;- - '"J 3 new 
&cJ 

1 
&J-3) 3-I-l~~ s//("'"- "J 

aLJz 
> --q$- 

(“1 
since y and a2W/3y2 are both of orrlec M. We may substitute 

the new value of aW/ay in the right hand of side of xq. (1.0) 

to 9et back Eq.(9) again. This result may easily be 

generalized to the case of more than one heavy field to qI?t 

Fq.(9). 

Let us now turn to the fields SCi), iCi) and SCi). The 

"e" of the fields H(i! and g(i) vanished in the 

supersymmetric limit, hence there certainly exi.$ts a local 

minimum of the potential at vanishing vev of these Eields. 

(Since aW/aY and mqy both vanish at this point, the 

derivatives of v with respect to these fields vanish at this 

point.) The vev's of Sfi) were undetermined in the exactly 

supersymmetric limit, i.e. the derivative of the potential 

with respect to S (i) vanished for al.1 values 0 E ,s(i) . The 

derivative of the new potential '; with respect to SCiJ 

vanishesat Sfi!=O, but not at other values of S(i). Hence the 

potential ; has a local minimum at <H(i)>=<,(i)>=<S(i) >=o. 

The fact that aW/a@ and 3W/a@o are equal to m@ 
* * q and in Q 

9 0 
respsctively, instead of bei.nq ze.ro, causes a shift of order 

m 
9 in the vev of 0 and @O from their values in the 

s~upersymmetric limit. 
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There is however, another local minimum, which i. s OF 

interest to us. To see this minimum let us write down the 

full potential, ignoring the 0, R, 6 and Q fields. 

i7 = 1 ;k$ - rma‘$qz t 1 gg - Tri‘J d 
c 

+ 3 j(,a(d + + o<F’i) +;, + ,:4 s(i)) )-fi”)- ,.~~ ~(i)“l’ 

i=1 

+ 2 1 SW ( q,'"J + + ,,:;, 
2 

pi: 1 

+ $$ 1 ,F’ H”’ -,“‘- mq sii)*(2 - m (A-3) (Ai <~3+~xz&j’z 
;>I J 

4M, 4;‘+ ML2 a,) - “*s (A--& “H(~J(y.,‘i’~++~~~++~‘sii))~‘i’ 

+.g I fst; -L&I2 

,L=i 

(12) 
In the new local minimum, Sti) takes a vev of order M, 

so as to keep either the upper three components or the lower 

three components of H (i) , ;;Ci) massless. For definiteness 

we shall assume that it is the lower three components of 

XCi) which remain massless. Hence, 

H(i) , i(i) then acquire vev's of order 9 so that, 

(<p, < G(iJ>)5zM&‘ET = rTrp,~i~>/cx~i’ c 0 or-, W 
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which makes the aW/aS(i)-mgS(i)* term small. The O(mg) and 

O(l"Lg) terms in <sfi)> and <H(i)><i(i) > respectively ,are :due 

to the mg(A-3)W(y) term in V. @ and a0 adjusts themselves so 

as to make aw/aQ-mg0* and aW/a@ -m O* terms to be of order 
0 go 

2 m. 
g 

Since now awla and aw/aoo terms receive extra 

contribuions of order mgM from the H ci),ci) terms, the vev 

of @ and o. are shifted by order m 4 f ram the previous 

minimum. 

We may now estimate the difference i q r:,e rgi,Y ~lensity 

between the two minima. One source of difference is the 

-’ ““s (fi--,) (iI, 8 + A, +a sf;’ +M, +’ &f’-$ &) 

- =- n,s (A-s 1 we ~5~ s-j 

term in the potential. If A@ and AQo denote the difEerence 

in the values of @ and a0 respectively in the two minima, 

the contribution from (15) to the difference in th e energy 

density between the two minima is, 

-mJ(A-“) f &!!~A& + ?!!+ A +j 
ago aF 

Since aWo/3Q and awo/aOo are of order mgM, and A@ and Aa 

are of order m g, this contribution goes as mg 3M. 

Other major sources of the difference in e:xeryy density 

between the two minima are the IF -m HIi)*12, 
H(i) g '- 

IF..(i)-mgA(i)*12, and the -mg(A-3)(W(y)-We(y)) term in V. 

Each of these contributions is again of order m 
4 

3M. Thus the 
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total difference in energy between the two miniina is of 

order 
mg 

3M. We do not attempt to compute its exact value 

here, since, as we shall see in the next section, radiative 

corrections produce a much larger energy difference (*:n 
g 

2M2) 

between these two minima. 
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III. RADIATIVE CORRECTIONS 

In this section we shall study the efEect of racliative 

corrections to the potential discussed in Sec.II. In an 

exactly supersymmetric theory, if supersymmetry is unbroken, 

the only effect OE radiative corrections is to produce 

wave-function renormalization of various fields in the 

superpotential. However, due to the presence of the 

explicit supersymmetry breaking terms given in (6) there 

will be higher loop radiative corrections to the effective 

action of the form[71, 

Jd’@ dZG f c $ ~ ;i ) q, ;i ) 
,. 

where the function f is a polynomial in the superfields yi, 

their covariant derivatives, and the spurion superfield n. 

It was pointed out by various authorsL81, that the presence 

of these terms may produce masses and vev's of order TM of 

the fields which had zero mass and/or vacuum expectation 

value in the exactly supersymmetric limit. In this 

particular model, the important radiatively induced terms in 

the effective action, which produce such effects, are of the 

form, 

( F, Fo, S?, M ) 4 h. C. 
j 

+ 2 cn7;r’ siiJ* s lil c +, +6,, S’*),M ) 4 h.C.) 
i-1 
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where the functions E and g are of order M times 

logarithmicaLly divergent functions. Typical diagrams, 

contributing to the functions F(i) <irId g(i) are shown in 

Fig.1. Similar terms involving the field g are also 

generated, but the effect of those terms will be :liscussed 

later. There are aLs0 radiative corrections involving 7 @ 
and F 

Oo’ 
'out we ignore them in our discussion, since they do 

not qualitatively change 'any of the results discussed below. 
We may now eliminate the F components of varioils ?iel.~?s 

bY using the equations oE motion. The F components of the 

other Pielc1.s are given by Eq. (3), except ? 
$(i) ' rhic'h is 

given by, 

F ? 
.p' 

= n(:,"" si';' G(iJ 4 mJ fLb* 

The part of the potential, containing the 0, aO, Sti), TICi! 

and %ci) fields is given by, 

I~-‘njdt I2gJn&12- 0 

+ 2 i‘ 1 g$- ‘“4 Hfi’* 1 2 + &, - x-yd w* I 2 
A’1 

+ law 
3S’iJ 

+ y 3 q + _ (.mJ S(iJ $!?-k, + h.c.) Cm; 1 S’+j ~ 

(A-s) W C L.C.) - ry,$ $(,(‘+ Sci’ + hX) 

* t 

+* r 1 -F 3’ -l-l Y,: I z 
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In order to minimize the potential, it is more 

convenient to write it as, 

J&- r"irP12 + 
2 

I i3u-m &“I 
a% d 

+2- r/2$, -y$j 
i=i 

)-(I” * 1 2 + 1 j33,m 
a’ii a) *- 

n3 ~I&+ I’ 

+ [ a& + n’4 j+*- n?l s’“* I 2 3 

-(kJ (,+3) w(yJ + I-&) + WI 2 {(-j=(i)*-$i’y) s”‘~-c,cc.~ 

+ -$ z I ‘27 3,. -T-L 3.; I = c. i 

We may minimize the potential, remembering that the 

functions f(i), g(i) are of order M. Thece are two 

different kinds of local. minimum of the potential. In the 

first kind, <Hti)>, <ifi)> are zero, and <S(i), is 

determined by minimizing, 

T c , mJ(f~iJ*- s~+f) 1’ +m; {(sw*- CJW* j s(i) -(. h,c.$ 
i. 

which produces a vev of SCi) of order M. In the seconl 

class of solutions, S (i) takes a vev so that either the 

Lower three components 0 c the upper three components of 
x(i) , ifi) remains massless. FOC definiteness, we shall 
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assume that the lower three components remain massless. 

(i.e. 5(i) takes the value given in (13)). .(i) , ,(i) then 

acquire vev of the form, 

(2.3) )+‘^I = p, N 
{y-y+ i 

J 

:r 

0 

0 

I 

so as to make the (F 
s(i) I2 term to be of order rni 

Which of these two types of solutions has the lower 

energy depends on the parameters of the buyerpotential W. 

We shall, however, assume that for each i, it is the second 

type of solution which has the lowest energy. (Uote that 

the difference in energy density between the two vacua is of 

o~cder lng2M2, because of the m g2(f(i)?g(i))S(i)* term.) This 

breaks the SU(3)xSU(3)xU(l) symmetry to SU(3)xSU(2)xIJ(l) at 

a scale of order PlOl'GeV, since fli)sM, and crii)Sl. 

There is, however, one subtle point wh ic'n is woe th 

mentioning. It may seem that the potential given in (21) is 

independent of the relative directions of various H (i!,,, s,, 

that the fields H(i), ici) could take vev of the form, 

Jp, = mJ (5wY-frJY) iv 

- ____-_ 

i 

a 

0 

\ 

0 
0 
I 

0 5.x r I 

I 

)f(Zl _ p, =pyy ; 
3 0 

t 
& G 

(24) 
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The value of the potential, as given in (20) and (21!, 

is independent of x if we do not consider the F --TI 0 

F@ the unbroken symmetry group 

10"mgo" '"m~~(3:~S~;~;,,(l,, whereas, if xsl, the unb'~:~~: GeV is 

symmetry group below 1Ol'GeV is SU(3)xU(l). The degeneracy, 

however, is removed when we take into account the correction 

to -zQ> due to the vev of HCi), cCi). To see this, consider 

the aW/a@-mg4* term appearing in (21), which is given by, 

3 A, (W.35 + A2 $0 & 4 M, + + 2 qci’ H”’ GciJ 
L-I, -N 

(25) 
Now suppose H(l), ii(') acquire vev of the for10 given in 

(12). In order to minimize the potential, we need to make 

small s!liEts 6<@> and 6~0 > 0 in <@> and COO> of the form, 

S <3X> = b, rn3 c% <+> = 

If now SC2) adjusts itself so as to make the mass 0 f 

Hi2), “(2) 
H6 vanish, the mass of HA2', iJ2' (m=4,5) is of 
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order m 
g' and in order to minimize the potential, the x of 

Eq.(12) must be zero. ThUS the unbroken subgroup below 

1Ol'GeV is SU(~)XSU(~)XU(~). Alternatively, S(2) may adjust 

itself so as to make the mass of H (2) 
m , iif’ (m=4,5) vanish. 

Then the x in Eq.(12) must be 1, and the anbroken symmetry 

group below 1010 GeV is SU(3)xU(l). Which of these two minima 

has the lowest energy depends on the values of various 

parameters. we shall assume that the S~(3)xSU(2)x~(1) 

symmetric ground s ta lx is the state of lowest ene wy below 

10l'GeV. 

As we have already seen, the vev oE ,(i) which keeps 

the 6th compone~nt of X(i) and i(i) massless, also keeps the 

mass of the fourth and the fifth components of H(i) and fi(i) 

to be of order 
mg' Thus we get n pairs of low mass (J?n,) 

weak doublet Higgs. Of these, one particular linear 

combination is absocbe d by the gauge bosons corresponding to 

the broken generators of the SU(3)xSU(3)xU(l) group through 

Higgs mechanism. Another linear combination acquires a mass 

of order lO"GeV ~through the D terms of the potential, and 

becomes the part of a complete massive vector 

supermultiplet. We are then left with (n-l) pairs OS weak 

doublet Higgs of mass s m 
LJ' Some of these masses may be 

driven to be negative due to radiative corrections(61, thus 

producing a spontaneous Sreakdown of the SU(2)wxU(l) 

symmetry at a scale of order mgq03 GeV. 

Let us now turn to the u field. Due to its coupling to 

the heavy field R, 6, one loop radiative corrections 
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generate terms in the potential of the form, 

U, ‘“ns- f,YM3 + b, n$ c* M, + h-c- c.27) 

If we eliminate the Fc term from the potential, the 

effective potential, involving the c fi eld is given by, 

J3 p2 CT-~-+ uJ’~~dM;tz+ (f$m-rly 

4 n-l-g lo-I2 

where we have set the vev's of the R, 

C3 + b, 8~; cr"M, +h.C.) 

R and the Q fields to 

‘oe zero. The potential has a minimum at, 

CT 2 J-uYmdM,L/31(2 -$-cd (29) 

The quarks get mass in the same wav as mentioned in 

Ref.4. If we decompose the quark content of the theory in 

terms of representations of the .SiJ ! 5 ) subgroup of S-J(6), 

then three linear combinations of Qikr 5(6),s' (s=1,2,3; k=l,2) 

(here Q&F&, d enote Lk) the part of Q6 which transform as the 5 

component of SU(5)) will combine with the three 2 5(15) ,s to 
get a mass of order <ii(ik>. Three orthogonal linear 

oo~nbi~~?ti(~ns (Q$!iz".) Of Q&F&=Jls remain massless at this 

stage. Similarly, three particular linear combinations oE 

Q10(15),s and QloC20J s combine with the three QroC2,, s to I , 
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get masses of order cc> or <Hii)>. Three IX tllo~J'3,nil linear 

coabinations (Qio,s 
Ws., of 

QlO(15),s and Q10 (20, ,S remain 

ma~~less at this stage. Also, Q$, , s (k=1,2; s=1,2,3) 

remain massless. Aster the breakdown of the SU(2)wxU(l) 

symmetry, ,$w . and ~yiy"* acquire masses of the form, 

,;,,. &,F. ;g.i’ 
fAn& a,, 

Phys. (.$y ,;I 

thus producing the usual low energy spctrum of Eecmions. 

Besides the usual fermions, t11ece are two massless 

SU(3)xSU(2)x~(l) singlets per generation. 

It is easy to introduce a Peccei-Quinn symaetry[91 in 

this model. For example, let us consider a theory with two 

pairs of higgses with the following coupling to the quark 

lepton fields: 

2 1 -&,5-t Q;;,d a,,,, P + ‘Y..,& Qy* ats>t G-’ 
~4,t=l 

+ Y3,.5t 4,,,., %,.t JfC2’ -I- J&f d&;,% Qro,t r.3 
(3 01 

The model then has a Peccei-Quinn symmetry, 

H(i) ---e i@ p , H(“d g”p p, g(>‘*e-‘fl j-y ,-.cz, ~ -9 eie + 

f.2 
_ 2.8 

L5,6 -la 62 QG->. I a;, --* Ql” &f:,1, -e $“a (qqA 
r/J I 1 

(31j 
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while all the other fields remain unchanged iunder this 

transformation. Thib symmetry is broken spontaneously at a 

scale of order lO"GeV by the vev 3 R(ik, -iii) , thus giving 

rise to an invisibLe axion with decay constant I,E or~lrc 

LOl'GeV. This falls within the narcmw range of values 

allowed by the present cosmology[lOl. 

The color triplet pactnet- of the weak doublet higgses 

acquire masses of order MsLOL6-10L7GeV in this model. Thus, 

if we want cosmological baryon productir>n *t a telnperature 

of order 10l"GeV[lL] we must introduce new color triplet 

Eields. This may easily be done by introducing a pair (6, 

6) of higgs superEields fi, G with the coupling, 

A fi 
s, f 2 n + A5 ?+i Q,,, (‘I’ Q,.y, t 5-7 

The vev (slOLOGeV) of CI produces a mass oE order LOLoGeV for 

all components of H. The bacyon number mav then be 

generated at a temperature of cxrder -LO:-O.;e.J through the 

decay of the higgs particle H, and also the decay of the 

heavy Eeclnions through the intermediate hi.ggs exchange. The 

complex phase in the decay amplitude may be generated 111ie to 

the Kobayshi-Maskawa type phases, arising from the mass 

matrix of the heavy Q fields. 
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IV. EVGLIJ'PON OF 'THE GAUGE COUPLING CONSTANTS 

'The calculation of sin2ew in this model is slightly 

more tricky than that in the usual STJ(5) models, since there 

is an intermediate ma.ss SC;lLt? corresponding to the 

su(3)xsu(3)xu(L) symmetry breaking scale v. Let g3, g,J an.3 

gL denote the coupling constants ,foc the S?(3)', SU(2)" and 

U(L) gauge groups respectively, below the scale v. One loop 

contribution to the renormalization group equations gi.ve 1,s 

the following evolution equat~ions for 8n,-c~l,~2<V, 

4~ 1 & (/+)-“- $j3 &)-‘j= @i l-‘(&+z) ( 9-G NT -2&.) 

477 ~,g,e4-’ - 3;L (cc,i’j = &?nj’(&,g2) (&-iN,- -3&-$tf) 

477 j ;if, wJ2 -8, (/.AJ’j -:(z:nq$+) (+%-+L--& 4 

(33) 

where N< and N10 are the number of Q fields belonging to the 

?? and 10 representations of SST(S) with mas.s oE order mg or 

less. IWe find it more convenient to state the rrsil2.t i:) 

t~+r~na :of SU(5) multiplets, since in the range mw<Ui<V, the 

heavy and the light Eields fall into full SU(5) multipletsJ 

H is the number of light higgs douh le t Eields. We have 
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assumed that in this range there is no light color trip&f: 

higgs. 

We inay use Eqs.(33) to relate the values oE gL, g2 and 

93 at a scale m, to those at ,the scale v. Above the scale v 

the unbroken group is SU(3jxSU(3jxU(Lj. In this, the first 

SU(3j subgroup is identical to the color subgroup, hence we 

may identify its coupling constant ix) '~3 at >T. -cl e second 

SU(3j subgroup contains SU(2)Weak as a subgroup. '-Ie.n.c~ i 1f 

we [denote its coupling constant by 53, we may write, 

g3 c .w 1 = g,w 

The calculation of the coupling constant Gl of the U(l) 

subgroup of SU(3jxSU(3jxU(l) in terms Of the coupling 

constants 0.f the ,7 SJ(~~XSIJ(~)XU(~) subgroup needs some work. 

Let Ti denote the generator of the iJ(lj subgroup of 

Su(3j~Su(2j~u(lj, TL denote the generator OE the ?J(l.) 

subgroup of SU(3jxSU(3jxU(Lj, and T2 denote the hypercharge 

generator of the s;rcnn;l SU(3j subgroup of SU(3jxRIJ(3) xiJ(Lj, 

all normalized to Tr(T a'h! -6,&,/2. Then we may write, 

7-y z 
d- 

3 ‘T, - Q -i-- bd 

Remembering that Tl couples with a coupling constant gl, 

T2 with a coupling constant s-13, .a~1 Ti with a coupling 

constant gl, we have the relation, 

9 -2 Cl = -;4 3, --z $ -& g-z @6) 
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Hence, 

31 IVp = $ &(19)-2- t &(l.$y2 

Zquations (34) and (37) help us in relating the couplinq 

constants g3, g3 and yL of the SJJ(3)xSU(3)xU(L) subgroup to 

those of the S~(3)xSU(2)xU(l) subgroup. The evolution of 

these coupling constants in the range "<P1,U2<MGTJT are 

governed by the following equations: 

4.r ( & &)-’ - 3 ( f.+ j.? = @d@@.~2 ) (T- s-- zN,s-:3NZC-~~T) 2 

4-l-r ( $&4,,-‘- ?jJ (b.2 ,-‘.j .= @iT)yL k’ (9- !$--zN,5-3N2,--; Hj 

47T ( gt (f-J2 - 5, ( /A$” 5 = (zig @Jj$ ) (- 2‘ - ;7r\l,, - 3r\I& - -2-5 ) 

0 38 

T being the number of colored higgs triplets with mass of 

order v. 

Eqs. (33)) (34), (37) and (38) give us the evolution 

eqilation for all the coupling constants from !mw to the granc~ 

unificati~>n scale. In these equations there a~<? 4 3. iY>g I+ t:1 e r 

three unknowns, sin20 w at ,n,, the intermediate scale v, and 

the grand unification scale MGUT. The constraint that all 

the three coupling constants lneet at the grand unification 

scale give us two equations r~latrng thes:? three unknowns. 
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AS a resnlt, we can solve for sin2ew and %UT as a function 

0 E v . We consider the minimal model with two pairs of 

higgses ,ci), ,ci) (i=1,2). The addition of the extra pair 

H, i, all of whose components acquire t'le same mass, dOt?S 

not change the prediction for MGUT or sin2ew. Taking 

a&&(m,)=9.9 and a,~,a.(mw)=127.56, we get the followi.ng 

values of sin20 
W and I%UT for different value.5 of v: 

w ./5 ;,2c9w M GUT 

IO7 mw -206 
15-S 

IO Mw 

I OS fnbv 
L5.25 

‘2 I t IO 7n-l 

JO3 mw .Zl 6 I0’s m, 

I O’O mw ‘220 IO 
,4.‘?5 ~mw 

Thus we see that the vaLue oE sin20w, as well as the 

value of MGUT is relatively insensitive to the value of v. 

The best value is obtained Eoc vsLOLiGeV. The corresponding 

GUT scale is of order 1017 GeV. Taking mgJ.103C;eiV, we see 

that the relation v-q is satisfied within a factor of 13. 

This may be obtained by adjusting VddOllS ci)upLing 

constants. 

We can aLso calcailate the value of aGUT in our theory, 

but its value is sensitive to the masses of various 

particles in the model. IF we asil,:ne that <o>s<H6>, then 

uGUT reaches t'he strong coupling limit before we r~+~ch the 
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grand unification scale, for lnost values of v. On the other 

hand, iE we consider <a> to be one or two oraers OE 

magnitude higher than <H > 6' then the situation is touch 

better. For <a>=lO1lmw, we get the following values of uCnT 1 

Ear diEferent values of v: 

l0’X-Q I-i 

IO 8 'Mw 3.1 

IO3 mw 5 1 

10’~ mw 7- I 
Thus we see that for v>lO"GeV, aGUT is still w i th i 2 

the perturbative regime. The reader may wonder whether 

higher loop corrections may affect the value Of sin20 
W’ 

since "GUT is not very small. However, uGUT becomes large 

only very near the grand unification scale (Ear example for 

v=lOgmw, <c>=lO1lmw, a&,(+>UT/10)=8.8), hence we do not 

expect the higher loop corrections to afl:e~:t %:I e value of 

sin20 w appreciably. 

The large vev of c may be obtainel by ix\ ing a small 

value of f3, and large value oE q3 in the superpotential (;). 

An alternative possibility will be mentioned i. n the next 

section. 
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V. SUMMARY AND DISCUSSIONS 

In this paper we have proposed a locally supersymmetric 

grand unified theory based on the SU(6) gauge group with a 

natural solution of the fine tuning problem. This model 

also has a Peccei-Quinn symmetry, which is spontaneously 

broken at a scale of order 10 lo-lOllGeV, thus giving rise to 

a harmless invisible axion. T'he SU(6) symmetry is 

spontaneously hroken down to STJ(3)xSU(3)xU(l) at a scale of 

order 1017GeV by the vev of the adjoint Higgs, and then to 

S?J(3)xSIJ(2)xZJ(l) at a scale of order 10 '"-1OllGeV by the vev 

of a fundamental Higgs. The SU(3)xSU(2)x~(l) symmetry is 

then broken down to SU(3)xJJ(l) at a scale of order 103GeV 

due to radiative corrections. This model gives us a good 

prediction for the value of sin28 
W’ Although the precise 

value of sin29 w depends on the scale of breaking(v) of the 

SU(3)xSU(3)xU(l) symmetry, it is relative1.y insensitive to 

this scale, and for the range 107mw~v~1010mw, it varies 

between .206 and .220. (Note that this is the allowed range 

of values oE v for the Peccei-Quinn symmetry breaking.) 

The unified gauge coupling CorlJ t-c 0 i: a t the grand 

unification scale turns out to be rather large in this 

:no~.le 1. In fact for most of the otherwise allowed ranges of 

values of the parameters of the theory, the gauge coupl~ing 

constant reaches the strong coupling constant before the 

unification scaJL$. Tl1i.s can be prevented bY suitably 

adjusting the parameters of the I3 e<, T.-J. Wrever, the 
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constraint 0 i: pert~lcbative unification puts a strong 

rest71 it:tion on the addition of any more lig 

this model, since this increases ,the value 

There are, however, several questions 

Se studied, the most important oE which i 

h t particles to 

of a GUT' 
wh i.c::h rwna in to 

s the spontaneous 

br?a’i?own . 0 E the SU(2) weakxu(l) symmetry. A detailed 

renormalization ~3roup program is needed to study this. The 

cos~nological domain wall problem due to the presence of the 

exact discrete symne try group, which is a subgroup of the 

Peccei-Quinn symmetry, still exists in this model. The 

solution of this problem may lie in the inflati:>nar zm>del 

of the early universeLl21, i f the reheating temperature 

after inflation is below the Peccei-Quinn phase transition, 

but still not too muzh below it, so as to produce enough 

heavy .fe.rmions and/or higgses whose decay may produce the 

observed baryon to ~p:loton ratio of the universe. The 

possibility of combining the scenario <,I: i.rlElationary 

universe with the model developed in this paper is under 

investigation. We also need a detailed s tu ay 10 E the 

cosmological baryon production in this model. 

Finally I wish to comment on a possible alteration 0 f 

this model. As we have seen, the light par tiicla ~?~,ntent of 

the theory is almost uniquely constrained to be that of %h e 

!a illi8nal (model proposed in Sec.II, if we want the gauge 

coupling to be small at the unification scale. We have ialso 

SPC?fi that even within the context of the minimal model, the 

vev of ~7 needs to be one or two orders of magnitude higher: 
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than t:he S~(3)xSU(3)xU(l) breaking scale, in order to ensure 

the smallness of aGUT. While this can be done by keeping the 

coupling constant 82 in the superpotential (1) small, and 

the mass paralneter M3 large, an alternative is to completely 

discard the CT, R and R Eields, and produce masses oE order 

1012-1013GeV for the Q20 s , and the ?l Eields by coupling them 

to the fields @ and Qo. This needs small coupling constauts 

0E order 10-4-10-5, but this is not %hO Iunnatural, since 

even in the standard Weinberg-Salam model we have such s!n.all 

Yukawa couplings. 
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FISURE CAPTION 

Fig.1: Contribution to E(i) [Fig. (a)] and g(i) [Fig. (h)! i.n 

one 130~ order. 
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